Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Med Internet Res ; 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2264576

ABSTRACT

BACKGROUND: COVID-19 data have been generated across the UK as a by-product of clinical care and public health provision, and numerous bespoke and repurposed research endeavours. Analysis of these data has underpinned the UK's response to the pandemic and informed public health policies and clinical guidelines. However, these data are held by different organisations and this fragmented landscape has presented challenges for public health agencies and researchers as they struggle to find, navigate permissions to access and interrogate the data they need to inform the pandemic response at pace. OBJECTIVE: To transform UK COVID-19 diagnostic datasets to be Findable, Accessible, Interoperable and Reusable (FAIR). METHODS: A federated infrastructure model was rapidly built to enable the automated and reproducible mapping of health Data Partners' pseudonymised data to the OMOP common data model without the need for any data to leave the data controllers' secure environments and to support federated cohort discovery queries and meta-analysis. RESULTS: 56 datasets from 19 organisations are being connected to the federated network. The data includes research cohorts and COVID-19 data collected through routine health care provision linked to longitudinal healthcare records and demographics. The infrastructure is live, supporting aggregate level querying of data across the UK. CONCLUSIONS: CO-CONNECT was developed by a multidisciplinary team enabling rapid COVID-19 data discovery, instantaneous meta-analysis across data sources, and is researching streamlined data extraction for egress into a Trusted Research Environment (TRE) for research and public health analysis. CO-CONNECT has the potential to make UK health data more interconnected and better able to answer national-level research questions whilst maintaining patient confidentiality and local governance procedures.

2.
J Pathol Inform ; 13: 100124, 2022.
Article in English | MEDLINE | ID: covidwho-1914715

ABSTRACT

Context: The shift to digital learning in medicine is well underway and in fact spurred by the COVID-19 pandemic. The didactic portion of our institution's cytotechnology (CT) education program is online and delivered to learners across the nation. With CT education elevating to the master's degree level, there is a need to expand cytologic correlation with surgical resection specimens. We also wanted to afford pathology residents the same. Methods: We developed an online cytologic-histologic correlation digital learning module (e-module) addressing thyroid fine needle aspirations (FNAs) and surgical thyroidectomy specimens which was administered as part of coursework in the CT education and pathology residency programs. The module was 35 min long and consisted of guided narration with both formative and summative interactive quizzes. After completion of the module, participants were invited to fill a brief survey comprised of multiple choice, Likert, and free response questions. This study was approved by the institutional review board. Results: The 29 respondents were comprised of 22 CT students and 7 residents. CT students had minimal experience thyroid pathology prior to the module; residents were mixed. Twenty-three (79.3%) ranked the highest tiers for learning cytopathology through this module, 24 (82.8%) for learning thyroid surgical pathology, and 25 (86.2%) for cytologic-histologic correlation. All respondents stated they would like similar activities in the future. Conclusions: Teaching cytology-histology correlation for thyroid in an electronic format was effective and well-received by participants. There is a demand for these activities among current learners, suggesting that expanding the available repertoire will be beneficial.

3.
Lancet Respir Med ; 10(9): 840-850, 2022 09.
Article in English | MEDLINE | ID: covidwho-1907937

ABSTRACT

BACKGROUND: Immunosuppressive treatments inhibit vaccine-induced immunity against SARS-CoV-2. We evaluated whether a 2-week interruption of methotrexate treatment immediately after the COVID-19 vaccine booster improved antibody responses against the S1 receptor-binding domain (S1-RBD) of the SARS-CoV-2 spike protein compared with uninterrupted treatment in patients with immune-mediated inflammatory diseases. METHODS: We did an open-label, prospective, two-arm, parallel-group, multicentre, randomised, controlled, superiority trial in 26 hospitals in the UK. We recruited adults from rheumatology and dermatology clinics who had been diagnosed with an immune-mediated inflammatory disease (eg, rheumatoid arthritis, psoriasis with or without arthritis, axial spondyloarthritis, atopic dermatitis, polymyalgia rheumatica, and systemic lupus erythematosus) and who were taking low-dose weekly methotrexate (≤25 mg per week) for at least 3 months. Participants also had to have received two primary vaccine doses from the UK COVID-19 vaccination programme. We randomly assigned the participants (1:1), using a centralised validated computer randomisation program, to suspend methotrexate treatment for 2 weeks immediately after their COVID-19 booster (suspend methotrexate group) or to continue treatment as usual (continue methotrexate group). Participants, investigators, clinical research staff, and data analysts were unmasked, while researchers doing the laboratory analyses were masked to group assignment. The primary outcome was S1-RBD antibody titres 4 weeks after receiving the COVID-19 booster vaccine dose, assessed in the intention-to-treat population. This trial is registered with ISRCT, ISRCTN11442263; following the pre-planned interim analysis, recruitment was stopped early. FINDINGS: Between Sept 30, 2021 and March 3, 2022, we recruited 340 participants, of whom 254 were included in the interim analysis and had been randomly assigned to one of the two groups: 127 in the continue methotrexate group and 127 in the suspend methotrexate group. Their mean age was 59·1 years, 155 (61%) were female, 130 (51%) had rheumatoid arthritis, and 86 (34%) had psoriasis with or without arthritis. After 4 weeks, the geometric mean S1-RBD antibody titre was 22 750 U/mL (95% CI 19 314-26 796) in the suspend methotrexate group and 10 798 U/mL (8970-12 997) in the continue methotrexate group, with a geometric mean ratio (GMR) of 2·19 (95% CI 1·57-3·04; p<0·0001; mixed-effects model). The increased antibody response in the suspend methotrexate group was consistent across methotrexate dose, administration route, type of immune-mediated inflammatory disease, age, primary vaccination platform, and history of SARS-CoV-2 infection. There were no intervention-related serious adverse events. INTERPRETATION: A 2-week interruption of methotrexate treatment for people with immune-mediated inflammatory diseases resulted in enhanced boosting of antibody responses after COVID-19 vaccination. This intervention is simple, low-cost, and easy to implement, and could potentially translate to increased vaccine efficacy and duration of protection for susceptible groups. FUNDING: National Institute for Health and Care Research.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Psoriasis , Adult , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunization, Secondary , Male , Methotrexate/therapeutic use , Middle Aged , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
EBioMedicine ; 81: 104101, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1906945

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes a respiratory illness named coronavirus disease 2019 (COVID-19), which is one of the main global health problems since 2019. Glycans attached to the Fc portion of immunoglobulin G (IgG) are important modulators of IgG effector functions. Fc region binds to different receptors on the surface of various immune cells, dictating the type of immune response. Here, we performed a large longitudinal study to determine whether the severity and duration of COVID-19 are associated with altered IgG glycosylation. METHODS: Using ultra-high-performance liquid chromatography analysis of released glycans, we analysed the composition of the total IgG N-glycome longitudinally during COVID-19 from four independent cohorts. We analysed 77 severe COVID-19 cases from the HR1 cohort (74% males, median age 72, age IQR 25-80); 31 severe cases in the HR2 cohort (77% males, median age 64, age IQR 41-86), 18 mild COVID-19 cases from the UK cohort (17% males, median age 50, age IQR 26-71) and 28 mild cases from the BiH cohort (71% males, median age 60, age IQR 12-78). FINDINGS: Multiple statistically significant changes in IgG glycome composition were observed during severe COVID-19. The most statistically significant changes included increased agalactosylation of IgG (meta-analysis 95% CI [0.03, 0.07], adjusted meta-analysis P= <0.0001), which regulates proinflammatory actions of IgG via complement system activation and indirectly as a lack of sialylation and decreased presence of bisecting N-acetylglucosamine on IgG (meta-analysis 95% CI [-0.11, -0.08], adjusted meta-analysis P= <0.0001), which indirectly affects antibody-dependent cell-mediated cytotoxicity. On the contrary, no statistically significant changes in IgG glycome composition were observed in patients with mild COVID-19. INTERPRETATION: The IgG glycome in severe COVID-19 patients is statistically significantly altered in a way that it indicates decreased immunosuppressive action of circulating immunoglobulins. The magnitude of observed changes is associated with the severity of the disease, indicating that aberrant IgG glycome composition or changes in IgG glycosylation may be an important molecular mechanism in COVID-19. FUNDING: This work has been supported in part by Croatian Science Foundation under the project IP-CORONA-2020-04-2052 and Croatian National Centre of Competence in Molecular Diagnostics (The European Structural and Investment Funds grant #KK.01.2.2.03.0006), by the UKRI/MRC (Cov-0331 - MR/V027883/1) and by the National Institutes for Health Research Nottingham Biomedical Research Centre and by Ministry Of Science, Higher Education and Youth Of Canton Sarajevo, grant number 27-02-11-4375-10/21.


Subject(s)
COVID-19 , Immunoglobulin G , Adolescent , Aged , Female , Humans , Longitudinal Studies , Male , Middle Aged , Observational Studies as Topic , Polysaccharides/metabolism , SARS-CoV-2
5.
BMJ Open ; 12(5): e062599, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1891843

ABSTRACT

INTRODUCTION: It is unknown if a temporary break in long-term immune-suppressive treatment after vaccination against COVID-19 improves vaccine response. The objective of this study was to evaluate if a 2-week interruption in low-dose weekly methotrexate treatment after SARS-CoV-2 vaccine boosters enhances the immune response compared with continuing treatment in adults with autoimmune inflammatory conditions. METHODS AND ANALYSIS: An open-label, pragmatic, prospective, parallel group, randomised controlled superiority trial with internal feasibility assessment and nested mechanistic substudy will be conducted in rheumatology and dermatology clinics in approximately 25 UK hospitals. The sample size is 560, randomised 1:1 to intervention and usual care arms. The main outcome measure is anti-spike receptor-binding domain (RBD) antibody level, collected at prebooster (baseline), 4 weeks (primary outcome) and 12 weeks (secondary outcome) post booster vaccination. Other secondary outcome measures are patient global assessments of disease activity, disease flares and their treatment, EuroQol 5- dimention 5-level (EQ-5D-5L), self-reported adherence with advice to interrupt or continue methotrexate, neutralising antibody titre against SARS-CoV-2 (mechanistic substudy) and oral methotrexate biochemical adherence (mechanistic substudy). Analysis of B-cell memory and T-cell responses at baseline and weeks 4 and 12 will be investigated subject to obtaining additional funding. The principal analysis will be performed on the groups as randomised (ie, intention to treat). The difference between the study arms in anti-spike RBD antibody level will be estimated using mixed effects model, allowing for repeated measures clustered within participants. The models will be adjusted for randomisation factors and prior SARS-CoV-2 infection status. ETHICS AND DISSEMINATION: This study was approved by the Leeds West Research Ethics Committee and Health Research Authority (REC reference: 21/HRA/3483, IRAS 303827). Participants will be required to give written informed consent before taking part in the trial. Dissemination will be via peer review publications, newsletters and conferences. Results will be communicated to policymakers. TRIAL REGISTRATION NUMBER: ISRCTN11442263.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Methotrexate/therapeutic use , Multicenter Studies as Topic , Prospective Studies , Randomized Controlled Trials as Topic , SARS-CoV-2
6.
Lancet ; 399(10335): 1618-1624, 2022 04 23.
Article in English | MEDLINE | ID: covidwho-1867912

ABSTRACT

BACKGROUND: The SARS-CoV-2 variant of concern, omicron, appears to be less severe than delta. We aim to quantify the differences in symptom prevalence, risk of hospital admission, and symptom duration among the vaccinated population. METHODS: In this prospective longitudinal observational study, we collected data from participants who were self-reporting test results and symptoms in the ZOE COVID app (previously known as the COVID Symptoms Study App). Eligible participants were aged 16-99 years, based in the UK, with a body-mass index between 15 and 55 kg/m2, had received at least two doses of any SARS-CoV-2 vaccine, were symptomatic, and logged a positive symptomatic PCR or lateral flow result for SARS-CoV-2 during the study period. The primary outcome was the likelihood of developing a given symptom (of the 32 monitored in the app) or hospital admission within 7 days before or after the positive test in participants infected during omicron prevalence compared with those infected during delta prevalence. FINDINGS: Between June 1, 2021, and Jan 17, 2022, we identified 63 002 participants who tested positive for SARS-CoV-2 and reported symptoms in the ZOE app. These patients were matched 1:1 for age, sex, and vaccination dose, across two periods (June 1 to Nov 27, 2021, delta prevalent at >70%; n=4990, and Dec 20, 2021, to Jan 17, 2022, omicron prevalent at >70%; n=4990). Loss of smell was less common in participants infected during omicron prevalence than during delta prevalence (16·7% vs 52·7%, odds ratio [OR] 0·17; 95% CI 0·16-0·19, p<0·001). Sore throat was more common during omicron prevalence than during delta prevalence (70·5% vs 60·8%, 1·55; 1·43-1·69, p<0·001). There was a lower rate of hospital admission during omicron prevalence than during delta prevalence (1·9% vs 2·6%, OR 0·75; 95% CI 0·57-0·98, p=0·03). INTERPRETATION: The prevalence of symptoms that characterise an omicron infection differs from those of the delta SARS-CoV-2 variant, apparently with less involvement of the lower respiratory tract and reduced probability of hospital admission. Our data indicate a shorter period of illness and potentially of infectiousness which should impact work-health policies and public health advice. FUNDING: Wellcome Trust, ZOE, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, and Medical Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Vaccines , Hospitals , Humans , Prevalence , Prospective Studies , SARS-CoV-2/genetics
7.
BMJ Open ; 12(5): e058526, 2022 05 06.
Article in English | MEDLINE | ID: covidwho-1832460

ABSTRACT

OBJECTIVE: During the first wave of the COVID-19 pandemic, changes to established care pathways and discharge thresholds for patients with fragility fractures were made. This was to increase hospital bed capacity and minimise the inpatient risk of contracting COVID-19. This study aims to identify the excess death rate in this population during the first wave of the pandemic. DESIGN: A longitudinal cohort study of patients with fragility fractures identified by specific International Classification of Diseases (ICD)-10 codes. The first wave of the pandemic was defined as the 3-month period between 1 March and 1 June 2020. The control group presented between 1 March and 1 June 2019. SETTING: Two acute National Health Service hospitals within the East Midlands region of England. PARTICIPANTS: 1846 patients with fragility fractures over the aforementioned two specified matched time points. PRIMARY AND SECONDARY OUTCOME MEASURES: Four-month mortality of all patients with fragility fractures with a subanalysis of patients with fragility hip fractures. RESULTS: 832 patients with fragility fracture were admitted during the pandemic period (104 diagnosed with COVID-19). 1014 patients presented with fragility fractures in the control group. Mortality in patients with fragility fracture without COVID-19 was significantly higher among pandemic period admissions (14.7%) than the pre-pandemic cohort (10.2%) (HR=1.86; 95% CI 1.41 to 2.45; p<0.001) adjusted for age and sex. Length of stay was shorter during the pandemic period (effect size=-4.2 days; 95% CI -5.8 to -3.1, p<0.001). Subanalysis of patients with fragility hip fracture revealed a mortality of 8.4% in the pre-pandemic cohort, and 15.48% during pandemic admissions with no COVID-19 diagnosis (HR=2.08; 95% CI 1.11 to 3.90; p=0.021). CONCLUSIONS: There is a significant increase in excess death, not explained by confirmed COVID-19 infections. Altered care pathways and aggressive discharge criteria during the pandemic are likely responsible for the increase in excess deaths.


Subject(s)
COVID-19 , Hip Fractures , COVID-19/epidemiology , Cohort Studies , Critical Pathways , Hip Fractures/epidemiology , Humans , Longitudinal Studies , Pandemics , Retrospective Studies , State Medicine
8.
Lancet Infect Dis ; 22(7): 1002-1010, 2022 07.
Article in English | MEDLINE | ID: covidwho-1778523

ABSTRACT

BACKGROUND: With the surge of new SARS-CoV-2 variants, countries have begun offering COVID-19 vaccine booster doses to high-risk groups and, more recently, to the adult population in general. However, uncertainty remains over how long primary vaccination series remain effective, the ideal timing for booster doses, and the safety of heterologous booster regimens. We aimed to investigate COVID-19 primary vaccine series effectiveness and its waning, and the safety and effectiveness of booster doses, in a UK community setting. METHODS: We used SARS-CoV-2 positivity rates in individuals from a longitudinal, prospective, community-based study (ZOE COVID Study), in which data were self-reported through an app, to assess the effectiveness of three COVID-19 vaccines (ChAdOx1 nCov19 [Oxford-AstraZeneca], BNT162b2 [Pfizer-BioNtech], and mRNA1273 [Moderna]) against infection in the 8 months after completion of primary vaccination series. In individuals receiving boosters, we investigated vaccine effectiveness and reactogenicity, by assessing 16 self-reported systemic and localised side-effects. We used multivariate Poisson regression models adjusting for confounders to estimate vaccine effectiveness. FINDINGS: We included 620 793 participants who received two vaccine doses (204 731 [33·0%] received BNT162b2, 405 239 [65·3%] received ChAdOx1 nCoV-19, and 10 823 [1·7%] received mRNA-1273) and subsequently had a SARS-CoV-2 test result between May 23 (chosen to exclude the period of alpha [B.1.1.7] variant dominance) and Nov 23, 2021. 62 172 (10·0%) vaccinated individuals tested positive for SARS-CoV-2 and were compared with 40 345 unvaccinated controls (6726 [16·7%] of whom tested positive). Vaccine effectiveness waned after the second dose: at 5 months, BNT162b2 effectiveness was 82·1% (95% CI 81·3-82·9), ChAdOx1 nCoV-19 effectiveness was 75·7% (74·9-76·4), and mRNA-1273 effectiveness was 84·3% (81·2-86·9). Vaccine effectiveness decreased more among individuals aged 55 years or older and among those with comorbidities. 135 932 individuals aged 55 years or older received a booster (2123 [1·6%] of whom tested positive). Vaccine effectiveness for booster doses in 0-3 months after BNT162b2 primary vaccination was higher than 92·5%, and effectiveness for heterologous boosters after ChAdOx1 nCoV-19 was at least 88·8%. For the booster reactogenicity analysis, in 317 011 participants, the most common systemic symptom was fatigue (in 31 881 [10·1%] participants) and the most common local symptom was tenderness (in 187 767 [59·2%]). Systemic side-effects were more common for heterologous schedules (32 632 [17·9%] of 182 374) than for homologous schedules (17 707 [13·2%] of 134 637; odds ratio 1·5, 95% CI 1·5-1·6, p<0·0001). INTERPRETATION: After 5 months, vaccine effectiveness remained high among individuals younger than 55 years. Booster doses restore vaccine effectiveness. Adverse reactions after booster doses were similar to those after the second dose. Homologous booster schedules had fewer reported systemic side-effects than heterologous boosters. FUNDING: Wellcome Trust, ZOE, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, Medical Research Council.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Adult , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Immunization, Secondary , Prospective Studies , SARS-CoV-2
9.
J Infect Dis ; 225(12): 2142-2154, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1740900

ABSTRACT

BACKGROUND: Specialized proresolution molecules (SPMs) halt the transition to chronic pathogenic inflammation. We aimed to quantify serum levels of pro- and anti-inflammatory bioactive lipids in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients, and to identify potential relationships with innate responses and clinical outcome. METHODS: Serum from 50 hospital admitted inpatients (22 female, 28 male) with confirmed symptomatic SARS-CoV-2 infection and 94 age- and sex-matched controls collected prior to the pandemic (SARS-CoV-2 negative), were processed for quantification of bioactive lipids and anti-nucleocapsid and anti-spike quantitative binding assays. RESULTS: SARS-CoV-2 serum had significantly higher concentrations of omega-6-derived proinflammatory lipids and omega-6- and omega-3-derived SPMs, compared to the age- and sex-matched SARS-CoV-2-negative group, which were not markedly altered by age or sex. There were significant positive correlations between SPMs, proinflammatory bioactive lipids, and anti-spike antibody binding. Levels of some SPMs were significantly higher in patients with an anti-spike antibody value >0.5. Levels of linoleic acid and 5,6-dihydroxy-8Z,11Z,14Z-eicosatrienoic acid were significantly lower in SARS-CoV-2 patients who died. CONCLUSIONS: SARS-CoV-2 infection was associated with increased levels of SPMs and other pro- and anti-inflammatory bioactive lipids, supporting the future investigation of the underlying enzymatic pathways, which may inform the development of novel treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Antibodies, Viral , Eicosanoids , Female , Humans , Male , Spike Glycoprotein, Coronavirus
10.
Immunology ; 166(1): 68-77, 2022 05.
Article in English | MEDLINE | ID: covidwho-1685320

ABSTRACT

SARS-CoV-2 infection results in different outcomes ranging from asymptomatic infection to mild or severe disease and death. Reasons for this diversity of outcome include differences in challenge dose, age, gender, comorbidity and host genomic variation. Human leukocyte antigen (HLA) polymorphisms may influence immune response and disease outcome. We investigated the association of HLAII alleles with case definition symptomatic COVID-19, virus-specific antibody and T-cell immunity. A total of 1364 UK healthcare workers (HCWs) were recruited during the first UK SARS-CoV-2 wave and analysed longitudinally, encompassing regular PCR screening for infection, symptom reporting, imputation of HLAII genotype and analysis for antibody and T-cell responses to nucleoprotein (N) and spike (S). Of 272 (20%) HCW who seroconverted, the presence of HLA-DRB1*13:02 was associated with a 6·7-fold increased risk of case definition symptomatic COVID-19. In terms of immune responsiveness, HLA-DRB1*15:02 was associated with lower nucleocapsid T-cell responses. There was no association between DRB1 alleles and anti-spike antibody titres after two COVID vaccine doses. However, HLA DRB1*15:01 was associated with increased spike T-cell responses following both first and second dose vaccination. Trial registration: NCT04318314 and ISRCTN15677965.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/genetics , COVID-19 Vaccines , HLA-DRB1 Chains/genetics , Histocompatibility Antigens Class I/genetics , Humans , SARS-CoV-2
11.
J Clin Gastroenterol ; 56(1): e38-e46, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1605073

ABSTRACT

OBJECTIVE: The authors investigated the incidence, risk factors, clinical characteristics, and outcomes of upper gastrointestinal bleeding (UGB) in patients with coronavirus disease 2019 (COVID-19), who were attending the emergency department (ED), before hospitalization. METHODS: We retrospectively reviewed all COVID-19 patients diagnosed with UGB in 62 Spanish EDs (20% of Spanish EDs, case group) during the first 2 months of the COVID-19 outbreak. We formed 2 control groups: COVID-19 patients without UGB (control group A) and non-COVID-19 patients with UGB (control group B). Fifty-three independent variables and 4 outcomes were compared between cases and controls. RESULTS: We identified 83 UGB in 74,814 patients with COVID-19 who were attending EDs (1.11%, 95% CI=0.88-1.38). This incidence was lower compared with non-COVID-19 patients [2474/1,388,879, 1.78%, 95% confidence interval (CI)=1.71-1.85; odds ratio (OR)=0.62; 95% CI=0.50-0.77]. Clinical characteristics associated with a higher risk of COVID-19 patients presenting with UGB were abdominal pain, vomiting, hematemesis, dyspnea, expectoration, melena, fever, cough, chest pain, and dysgeusia. Compared with non-COVID-19 patients with UGB, COVID-19 patients with UGB more frequently had fever, cough, expectoration, dyspnea, abdominal pain, diarrhea, interstitial lung infiltrates, and ground-glass lung opacities. They underwent fewer endoscopies in the ED (although diagnoses did not differ between cases and control group B) and less endoscopic treatment. After adjustment for age and sex, cases showed a higher in-hospital all-cause mortality than control group B (OR=2.05, 95% CI=1.09-3.86) but not control group A (OR=1.14, 95% CI=0.59-2.19) patients. CONCLUSIONS: The incidence of UGB in COVID-19 patients attending EDs was lower compared with non-COVID-19 patients. Digestive symptoms predominated over respiratory symptoms, and COVID-19 patients with UGB underwent fewer gastroscopies and endoscopic treatments than the general population with UGB. In-hospital mortality in COVID-19 patients with UGB was increased compared with non-COVID patients with UGB, but not compared with the remaining COVID-19 patients.


Subject(s)
COVID-19 , Gastrointestinal Hemorrhage/diagnosis , Gastrointestinal Hemorrhage/epidemiology , Gastrointestinal Hemorrhage/etiology , Gastroscopy , Humans , Incidence , Retrospective Studies , Risk Factors , SARS-CoV-2
12.
Nature ; 601(7891): 110-117, 2022 01.
Article in English | MEDLINE | ID: covidwho-1510600

ABSTRACT

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , DNA-Directed RNA Polymerases/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Seroconversion , Cell Proliferation , Cohort Studies , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Female , Health Personnel , Humans , Male , Membrane Proteins/immunology , Memory T Cells/cytology , Multienzyme Complexes/immunology , SARS-CoV-2/enzymology , SARS-CoV-2/growth & development , Transcription, Genetic/immunology
13.
Lancet Infect Dis ; 21(7): 939-949, 2021 07.
Article in English | MEDLINE | ID: covidwho-1433943

ABSTRACT

BACKGROUND: The Pfizer-BioNTech (BNT162b2) and the Oxford-AstraZeneca (ChAdOx1 nCoV-19) COVID-19 vaccines have shown excellent safety and efficacy in phase 3 trials. We aimed to investigate the safety and effectiveness of these vaccines in a UK community setting. METHODS: In this prospective observational study, we examined the proportion and probability of self-reported systemic and local side-effects within 8 days of vaccination in individuals using the COVID Symptom Study app who received one or two doses of the BNT162b2 vaccine or one dose of the ChAdOx1 nCoV-19 vaccine. We also compared infection rates in a subset of vaccinated individuals subsequently tested for SARS-CoV-2 with PCR or lateral flow tests with infection rates in unvaccinated controls. All analyses were adjusted by age (≤55 years vs >55 years), sex, health-care worker status (binary variable), obesity (BMI <30 kg/m2vs ≥30 kg/m2), and comorbidities (binary variable, with or without comorbidities). FINDINGS: Between Dec 8, and March 10, 2021, 627 383 individuals reported being vaccinated with 655 590 doses: 282 103 received one dose of BNT162b2, of whom 28 207 received a second dose, and 345 280 received one dose of ChAdOx1 nCoV-19. Systemic side-effects were reported by 13·5% (38 155 of 282 103) of individuals after the first dose of BNT162b2, by 22·0% (6216 of 28 207) after the second dose of BNT162b2, and by 33·7% (116 473 of 345 280) after the first dose of ChAdOx1 nCoV-19. Local side-effects were reported by 71·9% (150 023 of 208 767) of individuals after the first dose of BNT162b2, by 68·5% (9025 of 13 179) after the second dose of BNT162b2, and by 58·7% (104 282 of 177 655) after the first dose of ChAdOx1 nCoV-19. Systemic side-effects were more common (1·6 times after the first dose of ChAdOx1 nCoV-19 and 2·9 times after the first dose of BNT162b2) among individuals with previous SARS-CoV-2 infection than among those without known past infection. Local effects were similarly higher in individuals previously infected than in those without known past infection (1·4 times after the first dose of ChAdOx1 nCoV-19 and 1·2 times after the first dose of BNT162b2). 3106 of 103 622 vaccinated individuals and 50 340 of 464 356 unvaccinated controls tested positive for SARS-CoV-2 infection. Significant reductions in infection risk were seen starting at 12 days after the first dose, reaching 60% (95% CI 49-68) for ChAdOx1 nCoV-19 and 69% (66-72) for BNT162b2 at 21-44 days and 72% (63-79) for BNT162b2 after 45-59 days. INTERPRETATION: Systemic and local side-effects after BNT162b2 and ChAdOx1 nCoV-19 vaccination occur at frequencies lower than reported in phase 3 trials. Both vaccines decrease the risk of SARS-CoV-2 infection after 12 days. FUNDING: ZOE Global, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, UK Medical Research Council, Wellcome Trust, UK Research and Innovation, American Gastroenterological Association.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19/immunology , Drug-Related Side Effects and Adverse Reactions/immunology , SARS-CoV-2/immunology , Vaccination/adverse effects , Female , Humans , Male , Middle Aged , Prospective Studies , Safety/statistics & numerical data , Self Report/statistics & numerical data , United Kingdom
14.
Sci Transl Med ; 13(609): eabj0847, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1406600

ABSTRACT

Understanding the impact of prior infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on the response to vaccination is a priority for responding to the coronavirus disease 2019 (COVID-19) pandemic. In particular, it is necessary to understand how prior infection plus vaccination can modulate immune responses against variants of concern. To address this, we sampled 20 individuals with and 25 individuals without confirmed previous SARS-CoV-2 infection from a large cohort of health care workers followed serologically since April 2020. All 45 individuals had received two doses of the Pfizer-BioNTech BNT162b2 vaccine with a delayed booster at 10 weeks. Absolute and neutralizing antibody titers against wild-type SARS-CoV-2 and variants were measured using enzyme immunoassays and pseudotype neutralization assays. We observed antibody reactivity against lineage A, B.1.351, and P.1 variants with increasing antigenic exposure, through either vaccination or natural infection. This improvement was further confirmed in neutralization assays using fixed dilutions of serum samples. The impact of antigenic exposure was more evident in enzyme immunoassays measuring SARS-CoV-2 spike protein­specific IgG antibody concentrations. Our data show that multiple exposures to SARS-CoV-2 spike protein in the context of a delayed booster expand the neutralizing breadth of the antibody response to neutralization-resistant SARS-CoV-2 variants. This suggests that additional vaccine boosts may be beneficial in improving immune responses against future SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibody Formation , BNT162 Vaccine , COVID-19 Vaccines , Humans
15.
BMJ Nutr Prev Health ; 4(1): 149-157, 2021.
Article in English | MEDLINE | ID: covidwho-1325112

ABSTRACT

OBJECTIVES: Dietary supplements may ameliorate SARS-CoV-2 infection, although scientific evidence to support such a role is lacking. We investigated whether users of the COVID-19 Symptom Study app who regularly took dietary supplements were less likely to test positive for SARS-CoV-2 infection. DESIGN: App-based community survey. SETTING: 445 850 subscribers of an app that was launched to enable self-reported information related to SARS-CoV-2 infection for use in the general population in the UK (n=372 720), the USA (n=45 757) and Sweden (n=27 373). MAIN EXPOSURE: Self-reported regular dietary supplement usage (constant use during previous 3 months) in the first waves of the pandemic up to 31 July 2020. MAIN OUTCOME MEASURES: SARS-CoV-2 infection confirmed by viral RNA reverse transcriptase PCR test or serology test before 31 July 2020. RESULTS: In 372 720 UK participants (175 652 supplement users and 197 068 non-users), those taking probiotics, omega-3 fatty acids, multivitamins or vitamin D had a lower risk of SARS-CoV-2 infection by 14% (95% CI (8% to 19%)), 12% (95% CI (8% to 16%)), 13% (95% CI (10% to 16%)) and 9% (95% CI (6% to 12%)), respectively, after adjusting for potential confounders. No effect was observed for those taking vitamin C, zinc or garlic supplements. On stratification by sex, age and body mass index (BMI), the protective associations in individuals taking probiotics, omega-3 fatty acids, multivitamins and vitamin D were observed in females across all ages and BMI groups, but were not seen in men. The same overall pattern of association was observed in both the US and Swedish cohorts. CONCLUSION: In women, we observed a modest but significant association between use of probiotics, omega-3 fatty acid, multivitamin or vitamin D supplements and lower risk of testing positive for SARS-CoV-2. We found no clear benefits for men nor any effect of vitamin C, garlic or zinc. Randomised controlled trials are required to confirm these observational findings before any therapeutic recommendations can be made.

16.
Science ; 2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1209815

ABSTRACT

SARS-CoV-2 vaccine rollout has coincided with the spread of variants of concern. We investigated if single dose vaccination, with or without prior infection, confers cross protective immunity to variants. We analyzed T and B cell responses after first dose vaccination with the Pfizer/BioNTech mRNA vaccine BNT162b2 in healthcare workers (HCW) followed longitudinally, with or without prior Wuhan-Hu-1 SARS-CoV-2 infection. After one dose, individuals with prior infection showed enhanced T cell immunity, antibody secreting memory B cell response to spike and neutralizing antibodies effective against B.1.1.7 and B.1.351. By comparison, HCW receiving one vaccine dose without prior infection showed reduced immunity against variants. B.1.1.7 and B.1.351 spike mutations resulted in increased, abrogated or unchanged T cell responses depending on human leukocyte antigen (HLA) polymorphisms. Single dose vaccination with BNT162b2 in the context of prior infection with a heterologous variant substantially enhances neutralizing antibody responses against variants.

17.
EClinicalMedicine ; 34: 100835, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1184950

ABSTRACT

BACKGROUND: : Healthcare workers (HCWs) have increased rates of SARS-CoV-2 infection compared with the general population. We aimed to understand ethnic differences in SARS-CoV-2 seropositivity among hospital healthcare workers depending on their hospital role, socioeconomic status, Covid-19 symptoms and basic demographics. METHODS: A prospective longitudinal observational cohort study. 1364 HCWs at five UK hospitals were studied with up to 16 weeks of symptom questionnaires and antibody testing (to both nucleocapsid and spike protein) during the first UK wave in five NHS hospitals between March 20 and July 10 2020. The main outcome measures were SARS-CoV-2 infection (seropositivity at any time-point) and symptoms. Registration number: NCT04318314. FINDINGS: 272 of 1364 HCWs (mean age 40.7 years, 72% female, 74% White, ≥6 samples per participant) seroconverted, reporting predominantly mild or no symptoms. Seropositivity was lower in Intensive Therapy Unit (ITU) workers (OR=0.44 95%CI 0.24, 0.77; p=0.0035). Seropositivity was higher in Black (compared to White) participants, independent of age, sex, role and index of multiple deprivation (OR=2.61 95%CI 1.47-4.62 p=0.0009). No association was seen between White HCWs and other minority ethnic groups. INTERPRETATION: In the UK first wave, Black ethnicity (but not other ethnicities) more than doubled HCWs likelihood of seropositivity, independent of age, sex, measured socio-economic factors and hospital role.

18.
Eur J Clin Microbiol Infect Dis ; 40(8): 1645-1656, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1122784

ABSTRACT

We investigated the incidence, clinical characteristics, risk factors, and outcome of meningoencephalitis (ME) in patients with COVID-19 attending emergency departments (ED), before hospitalization. We retrospectively reviewed all COVID patients diagnosed with ME in 61 Spanish EDs (20% of Spanish EDs, COVID-ME) during the COVID pandemic. We formed two control groups: non-COVID patients with ME (non-COVID-ME) and COVID patients without ME (COVID-non-ME). Unadjusted comparisons between cases and controls were performed regarding 57 baseline and clinical characteristics and 4 outcomes. Cerebrospinal fluid (CSF) biochemical and serologic findings of COVID-ME and non-COVID-ME were also investigated. We identified 29 ME in 71,904 patients with COVID-19 attending EDs (0.40‰, 95%CI=0.27-0.58). This incidence was higher than that observed in non-COVID patients (150/1,358,134, 0.11‰, 95%CI=0.09-0.13; OR=3.65, 95%CI=2.45-5.44). With respect to non-COVID-ME, COVID-ME more frequently had dyspnea and chest X-ray abnormalities, and neck stiffness was less frequent (OR=0.3, 95%CI=0.1-0.9). In 69.0% of COVID-ME, CSF cells were predominantly lymphocytes, and SARS-CoV-2 antigen was detected by RT-PCR in 1 patient. The clinical characteristics associated with a higher risk of presenting ME in COVID patients were vomiting (OR=3.7, 95%CI=1.4-10.2), headache (OR=24.7, 95%CI=10.2-60.1), and altered mental status (OR=12.9, 95%CI=6.6-25.0). COVID-ME patients had a higher in-hospital mortality than non-COVID-ME patients (OR=2.26; 95%CI=1.04-4.48), and a higher need for hospitalization (OR=8.02; 95%CI=1.19-66.7) and intensive care admission (OR=5.89; 95%CI=3.12-11.14) than COVID-non-ME patients. ME is an unusual form of COVID presentation (<0.5‰ cases), but is more than 4-fold more frequent than in non-COVID patients attending the ED. As the majority of these MEs had lymphocytic predominance and in one patient SARS-CoV-2 antigen was detected in CSF, SARS-CoV-2 could be the cause of most of the cases observed. COVID-ME patients had a higher unadjusted in-hospital mortality than non-COVID-ME patients.


Subject(s)
COVID-19/complications , Meningoencephalitis/virology , Adult , Aged , Critical Care , Emergency Service, Hospital , Female , Hospital Mortality , Hospitalization , Humans , Incidence , Male , Middle Aged , Retrospective Studies , Risk Factors , Spain
19.
Endocrinol Diabetes Metab ; 4(2): e00215, 2021 04.
Article in English | MEDLINE | ID: covidwho-1086347

ABSTRACT

Background: COVID-19 has a broad clinical spectrum. We investigated the role of serum markers measured on admission on severity as assessed at discharge and investigated those which relate to the effect of BMI on severity. Methods: Clinical and laboratory data from 610 COVID-19 cases hospitalized in the province of Zheijang, China were investigated as risk factors for severe COVID-19 (assessed by respiratory distress) compared to mild or common forms using logistic regression methods. Biochemical markers were correlated with severity using spearman correlations, and a ROC analysis was used to determine the individual contribution of each of the biochemical markers on severity. We carried out formal mediation analyses to investigate the extent of the effect of body mass index (BMI) on COVID-19 severity mediated by hypertension, glycemia, Lactose Dehydrogenase (LDH) at the time of hospitalization and C-Reactive Protein levels (CRP), in units of standard deviations. Results: The individual markers measured on admission contributing most strongly to prediction of COVID-19 severity as assessed at discharge were LDH, CRP and glucose. The proportion of the effect of BMI on severity of COVID-19 mediated by CRP, glycemia or hypertension, we find that glucose mediated 79% (p < .0001), LDH mediated 78% (p < .0001), hypertension mediated 66% (p < .0001); however, only 44% (p < .005) was mediated by systemic inflammation (CRP). Conclusion: Our data indicate that a larger proportion of the effect of BMI on severity of COVID-19 is mediated by glycemia and LDH levels whereas less than half of it is mediated by systemic inflammation.


Subject(s)
Blood Glucose/metabolism , COVID-19/blood , COVID-19/pathology , Hypertension/complications , L-Lactate Dehydrogenase/blood , Adult , Biomarkers/blood , Body Mass Index , C-Reactive Protein/metabolism , COVID-19/complications , COVID-19/physiopathology , China , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index
20.
BMC Med ; 19(1): 37, 2021 02 11.
Article in English | MEDLINE | ID: covidwho-1079239

ABSTRACT

BACKGROUND: Chronic inflammation, which can be modulated by diet, is linked to high white blood cell counts and correlates with higher cardiometabolic risk and risk of more severe infections, as in the case of COVID-19. METHODS: Here, we assessed the association between white blood cell profile (lymphocytes, basophils, eosinophils, neutrophils, monocytes and total white blood cells) as markers of chronic inflammation, habitual diet and gut microbiome composition (determined by sequencing of the 16S RNA) in 986 healthy individuals from the PREDICT-1 nutritional intervention study. We then investigated whether the gut microbiome mediates part of the benefits of vegetable intake on lymphocyte counts. RESULTS: Higher levels of white blood cells, lymphocytes and basophils were all significantly correlated with lower habitual intake of vegetables, with vegetable intake explaining between 3.59 and 6.58% of variation in white blood cells after adjusting for covariates and multiple testing using false discovery rate (q < 0.1). No such association was seen with fruit intake. A mediation analysis found that 20.00% of the effect of vegetable intake on lymphocyte counts was mediated by one bacterial genus, Collinsella, known to increase with the intake of processed foods and previously associated with fatty liver disease. We further correlated white blood cells to other inflammatory markers including IL6 and GlycA, fasting and post-prandial glucose levels and found a significant relationship between inflammation and diet. CONCLUSION: A habitual diet high in vegetables, but not fruits, is linked to a lower inflammatory profile for white blood cells, and a fifth of the effect is mediated by the genus Collinsella. TRIAL REGISTRATION: The ClinicalTrials.gov registration identifier is NCT03479866 .


Subject(s)
Diet , Fruit , Gastrointestinal Microbiome/genetics , Leukocytes , Vegetables , Actinobacteria , Adult , Biomarkers/blood , COVID-19 , Clostridiales , Clostridium , Fasting , Female , Humans , Interleukin-6/blood , Leukocyte Count , Lymphocyte Count , Male , Mediation Analysis , Middle Aged , RNA, Ribosomal, 16S/genetics , Ruminococcus , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL